Influence of Economic Factors and Government Initiatives on International Tourism Demand in Kenya
DOI:
https://doi.org/10.53819/81018102t2183Abstract
This study examined the influence of economic factors and government interventions on the demand for international tourism in Kenya. Using a correlational research design and data from the Kenya National Bureau of Statistics, Kenya Tourism Board, and World Development Indicators, the study analyzes various economic indicators and tourism-related data for the period 1980-2019. The analysis includes correlation analysis, regression analysis, cointegration testing, and Vector Error Correction Model (VECM) analysis. The findings reveal significant relationships between economic factors, government initiatives, and international tourism arrivals. GDP and tourism earnings exhibit strong positive correlations with arrivals, while variables such as the weighted exchange rate, trade openness, tourism product price, substitute product price, and tourism promotion funds show moderate to negative correlations. Regression analysis and VECM modeling provide insights into the relationships and dynamics among the variables, allowing for forecasting of future trends. The findings of this study suggest that government initiatives, particularly investment in tourism promotion, play a significant role in attracting international tourists to Kenya. The country's GDP and tourism earnings are also important factors influencing tourism demand. These findings can guide policymakers and tourism stakeholders in formulating strategies to further develop and promote the tourism industry in Kenya. Measures to enhance the country's political stability, diversify tourism offerings, and allocate sufficient funds for tourism promotion can contribute to sustained growth in international tourism arrivals.
Keywords: Tourism Demand, Economic Factors, Government initiatives, Tourism Promotion Fund, Product Price, Substitute Product Price
References
Adeola, O., Boso, N., Evans, O., 2018. Drivers of international tourism demand in Africa. Bus. Econ. 53, 25–36. https://doi.org/10.1057/s11369-017-0051-3
Adu-Ampong, E.A., 2018. Tourism and national economic development planning in Ghana, 1964–2014. Int. Dev. Plan. Rev. 40, 75–95. https://doi.org/10.3828/idpr.2018.2
Akama, J.S., 2002. The role of Government in the development of tourism in Kenya. Int. J. Tour. Res. 4, 1–14. https://doi.org/10.1002/jtr.318
Akama, J.S., 1999. The evolution of tourism in Kenya. J. Sustain. Tour. 7, 6–25. https://doi.org/10.1080/09669589908667324
Bhandari, M., 2014. Is Tourism Always Beneficial ? A Case Study from Masai Mara National Reserve, Narok, Kenya. Pacific J. Sci. Technol. 15, 458–483.
Buhalis, D., Leung, R., 2018. Smart hospitality—Interconnectivity and interoperability towards an ecosystem. Int. J. Hosp. Manag. 71, 41–50. https://doi.org/10.1016/j.ijhm.2017.11.011
Chen, L.-J., Chen, W.-P., 2015. Push–pull factors in international birders’ travel. Tour. Manag. 48, 416–425. https://doi.org/10.1016/j.tourman.2014.12.011
Chiawo, D., Haggai, C., Muniu, V., Njuguna, R., Ngila, P., 2023. Tourism Recovery and Sustainability Post Pandemic: An Integrated Approach for Kenya’s Tourism Hotspots. Sustainability 15, 7291. https://doi.org/10.3390/su15097291
Daoud, J.I., 2017. Multicollinearity and Regression Analysis. J. Phys. Conf. Ser. 949, 012009. https://doi.org/10.1088/1742-6596/949/1/012009
De Leeuw, J., 1983. Models and methods for the analysis of correlation coefficients. J. Econom. 22, 113–137. https://doi.org/10.1016/0304-4076(83)90096-9
De Vita, G., Kyaw, K.S., 2013. ROLE OF THE EXCHANGE RATE IN TOURISM DEMAND. Ann. Tour. Res. 43, 624–627. https://doi.org/10.1016/j.annals.2013.07.011
Derek, S.Y., 2017. Handbook of Regression Methods, 1st editio. ed. CRC Press.
Dickey, D.A., Fuller, W.A., 1979. Distribution of the Estimators for Autoregressive Time Series with a Unit Root. J. Am. Stat. Assoc. 74, 427–431. https://doi.org/10.1080/01621459.1979.10482531
Dieke, P.U.C., 2003. Tourism in Africa’s economic development: policy implications. Manag. Decis. 41, 287–295. https://doi.org/10.1108/00251740310469468
Dwyer, L., Forsyth, P., 1997. Measuring the benefits and yield from foreign tourism. Int. J. Soc. Econ. 24, 223–236. https://doi.org/10.1108/03068299710161232
Eilat, Y., Einav, L., 2004. Determinants of international tourism: A three-dimensional panel data analysis. Appl. Econ. 36, 1315–1327. https://doi.org/10.1080/000368404000180897
Erjavec, N., Devčić, K., 2021. Accommodation Capacity, Trade Openness and International Tourism Demand in Croatia. Tourism 70, 43–52. https://doi.org/10.37741/t.70.1.3
Fatmawati, K., 2022. Gross Domestic Product: Financing & Investment Activities and State Expenditures. KINERJA J. Manaj. Organ. dan Ind. 1, 11–18.
Fourie, J., Santana-Gallego, M., 2013. The determinants of African tourism. Dev. South. Afr. 30, 347–366. https://doi.org/10.1080/0376835X.2013.817302
Grynspan, R., 2022. Economic Development in Africa: Tourism for Transformative and Inclusive Growth. Int. J. Adv. Stud. Econ. Public Sect. Manag. 10, 37–44. https://doi.org/10.48028/iiprds/ijasepsm.v10.i1.03
Habib, F., Rahim, K.A., 2009. A Bound Test Approach to Cointegration of Tourism Demand. Am. J. Appl. Sci. 6, 1924–1931. https://doi.org/10.3844/ajassp.2009.1924.1931
Haiyan Song, Witt, S.F., Wong, K.F., Wu, D.C., 2009. An Empirical Study of Forecast Combination in Tourism. J. Hosp. Tour. Res. 33, 3–29. https://doi.org/10.1177/1096348008321366
Henderson, J.C., 2016. Muslim travellers, tourism industry responses and the case of Japan. Tour. Recreat. Res. 41, 339–347. https://doi.org/10.1080/02508281.2016.1215090
Hussain, M.N., 2023. Evaluating the impact of air transportation, railway transportation, and trade openness on inbound and outbound tourism in BRI countries. J. Air Transp. Manag. 106, 102307. https://doi.org/10.1016/j.jairtraman.2022.102307
Ighodaro, C.A.U., Ovenseri-Ogbomo, F.O., 2018. The Dynamics of Exports and Economic Growth: Assessing the Evidence from Nigeria. Am. Econ. Soc. Rev. 4, 15–22. https://doi.org/10.46281/aesr.v4i1.212
Isakin, M., Ngo, P. V., 2020. Variance Decomposition Analysis for Nonlinear Economic Models. Oxf. Bull. Econ. Stat. 82, 1362–1374. https://doi.org/10.1111/obes.12369
Jalilvand, M.R., Salimipour, S., Elyasi, M., Mohammadi, M., 2017. Factors influencing word of mouth behaviour in the restaurant industry. Mark. Intell. Plan. 35, 81–110. https://doi.org/10.1108/MIP-02-2016-0024
Johansen, S., 1988. Statistical analysis of cointegration vectors. J. Econ. Dyn. Control 12, 231–254. https://doi.org/10.1016/0165-1889(88)90041-3
Kaltenborn, B.P., Nyahongo, J.W., Kideghesho, J.R., 2011. The attitudes of tourists towards the environmental, social and managerial attributes of Serengeti National Park, Tanzania. Trop. Conserv. Sci. 4, 132–148. https://doi.org/10.1177/194008291100400204
Kenebayeva, A.S., 2021. Socially responsible behaviour of Kazakhstani consumers. Cent. Asian Econ. Rev. 55–64. https://doi.org/10.52821/2224-5561-2021-2-55-64
Keshavarzian, P., Wu, C.-L., 2017. A qualitative research on travellers’ destination choice behaviour. Int. J. Tour. Res. 19, 546–556. https://doi.org/10.1002/jtr.2128
Khan, N., Hassan, A.U., Fahad, S., Naushad, M., 2020. Factors Affecting Tourism Industry and Its Impacts on Global Economy of the World. SSRN Electron. J. https://doi.org/10.2139/ssrn.3559353
Khandaker, S., Islam, S.Z., 2017. International Tourism Demand and Macroeconomic Factors 7, 389–393.
Kim, J.H., 2019. Multicollinearity and misleading statistical results. Korean J. Anesthesiol. 72, 558–569. https://doi.org/10.4097/kja.19087
Kumar, V., Petersen, J.A., 2012. Statistical methods in customer relationship management. John Wiley & Sons.
Kwiatkowski, D., Phillips, P.C.B., Schmidt, P., Shin, Y., 1992. Testing the null hypothesis of stationarity against the alternative of a unit root. J. Econom. 54, 159–178. https://doi.org/10.1016/0304-4076(92)90104-Y
Kyrylov, Y., Hranovska, V., Boiko, V., Kwilinski, A., Boiko, L., 2020. International Tourism Development in the Context of Increasing Globalization Risks: On the Example of Ukraine’s Integration into the Global Tourism Industry. J. Risk Financ. Manag. 13, 303. https://doi.org/10.3390/jrfm13120303
Li, F. (Sam), Qi, H., 2019. An investigation of push and pull motivations of Chinese tourism doctoral students studying overseas. J. Hosp. Leis. Sport Tour. Educ. 24, 90–99. https://doi.org/10.1016/j.jhlste.2019.01.002
Martin, C.A., Witt, S.F., 1988. Substitute prices in models of tourism demand. Ann. Tour. Res. 15, 255–268. https://doi.org/10.1016/0160-7383(88)90086-2
Martins, L.F., Gan, Y., Ferreira-Lopes, A., 2017. An empirical analysis of the influence of macroeconomic determinants on World tourism demand. Tour. Manag. 61, 248–260. https://doi.org/10.1016/j.tourman.2017.01.008
Maski, G., Sumantri, V.D.S., Fadli, F., 2020. Does tourism growth create a trickle-down effect in rural areas. Int. J. Serv. Econ. Manag. 11, 191. https://doi.org/10.1504/IJSEM.2020.10033316
McConnell et al., 1999. A Decomposition of the Increased Stability of GDP Growth. Curr. Issues Econ. Financ. 5, 1–6.
Mosalev, A.I., 2020. Influence in the Behavioral Economy of the Tourist Industry. Proc. Int. Sci. Conf. “Far East Con” (ISCFEC 2020) 128, 726–732. https://doi.org/10.2991/aebmr.k.200312.103
Muganda, M., Sahli, M., A Smith, K., 2010. Tourism’s contribution to poverty alleviation: A community perspective from Tanzania. Dev. South. Afr. 27, 629–646. https://doi.org/10.1080/0376835X.2010.522826
Muryani, Permatasari, M.F., Esquivias, M.A., 2020. Determinants of Tourism Demand in Indonesia: A Panel Data Analysis. Tour. Anal. 25, 77–89. https://doi.org/10.3727/108354220X15758301241666
Musavengane, R., Siakwah, P., Leonard, L., 2019. “Does the poor matter” in pro-poor driven sub-Saharan African cities? towards progressive and inclusive pro-poor tourism. Int. J. Tour. Cities 5, 392–411. https://doi.org/10.1108/IJTC-05-2019-0057
Nuraeni, S., Arru, A.P., Novani, S., 2015. Understanding Consumer Decision-making in Tourism Sector: Conjoint Analysis. Procedia - Soc. Behav. Sci. 169, 312–317. https://doi.org/10.1016/j.sbspro.2015.01.315
Odunga, P., Belsoy, S., Nthinga, R., Maingi, S., 2011. Conference tourism in Kenya: towards tourism product development, diversification and extension.
Odunga, P.O., Manyara, G., Yobesia, M., 2020. Estimating the direct contribution of tourism to Rwanda’s economy: Tourism satellite account methodology. Tour. Hosp. Res. 20, 259–271. https://doi.org/10.1177/1467358419857786
Okafor, L.E., Adeola, O., Folarin, O., 2023. Natural disasters, trade openness and international tourism: the role of income levels across countries. Tour. Recreat. Res. 48, 60–78. https://doi.org/10.1080/02508281.2021.1891740
Okello, M.M., Ole Seno, S.K., Nthiga, R.W., 2009. Reconciling people’s livelihoods and environmental conservation in the rural landscapes in Kenya: Opportunities and challenges in the Amboseli landscapes. Nat. Resour. Forum 33, 123–133. https://doi.org/10.1111/j.1477-8947.2009.01216.x
Papatheodorou, A., Rosselló, J., Xiao, H., 2010. Global economic crisis and tourism: Consequences and perspectives. J. Travel Res. 49, 39–45. https://doi.org/10.1177/0047287509355327
Quintal, V.A., Thomas, B., Phau, I., Soldat, Z., 2022. Segmenting Hedonic Wine Tourists Using Push–Pull Winescape Attributes. Australas. Mark. J. 30, 237–245. https://doi.org/10.1177/1839334921999478
R Core Team, 2023. R: A Language and Environment for Statistical Computing.
Rasowo, J.O., Orina, P., Nyonje, B., Awuor, S., Olendi, R., 2020. Harnessing Kenya’s Blue Economy: prospects and challenges. J. Indian Ocean Reg. 16, 292–316. https://doi.org/10.1080/19480881.2020.1825199
Shrestha, N., 2020. Detecting Multicollinearity in Regression Analysis. Am. J. Appl. Math. Stat. 8, 39–42. https://doi.org/10.12691/ajams-8-2-1
Skerritt, D., Huybers, T., 2005. The effect of international tourism on economic development: An empirical analysis. Asia Pacific J. Tour. Res. 10, 23–43. https://doi.org/10.1080/1094166042000330209
Smeral, E., Weber, A., 2000. Forecasting international tourism trends to 2010. Ann. Tour. Res. https://doi.org/10.1016/S0160-7383(99)00128-0
Song, H., Li, G., Witt, S.F., Fei, B., 2010. Tourism demand modelling and forecasting: How should demand be measured? Tour. Econ. https://doi.org/10.5367/000000010790872213
Song, H., Qiu, R.T.R., Park, J., 2019. A review of research on tourism demand forecasting. Ann. Tour. Res. 75, 338–362. https://doi.org/10.1016/j.annals.2018.12.001
Stabler, M.J., And, A.P., Sinclair, M.T., 2010. The economics of tourism. J. Tour. Hist. 2, 245–246. https://doi.org/10.1080/1755182X.2010.516898
Thi, D., Tran, V.Q., Nguyen, D.T., 2023. The relationship between renewable energy consumption, international tourism, trade openness, innovation and carbon dioxide emissions: international evidence. Int. J. Sustain. Energy 42, 397–416. https://doi.org/10.1080/14786451.2023.2192827
Tisdell, C., Elgar, E., 2003. The Economics of Tourism Research. Scand. J. Hosp. Tour. 1, 72–74. https://doi.org/10.1080/15022250127789
Tyler, W.G., 1981. Growth and export expansion in developing countries. J. Dev. Econ. 9, 121–130. https://doi.org/10.1016/0304-3878(81)90007-9
Uysal, M., Li, X., Sirakaya-Turk, E., 2009. Push–pull dynamics in travel decisions, in: Handbook of Hospitality Marketing Management. Routledge. https://doi.org/10.4324/9780080569437.ch15
Valle, E., Yobesia, M.N., 2009. Economic Contribution of Tourism in Kenya. Tour. Anal. 14, 401–414. https://doi.org/10.3727/108354209789704986
Voyer, M., Barclay, K., McIlgorm, A., Mazur, N., 2017. Connections or conflict? A social and economic analysis of the interconnections between the professional fishing industry, recreational fishing and marine tourism in coastal communities in NSW, Australia. Mar. Policy 76, 114–121. https://doi.org/10.1016/j.marpol.2016.11.029
Winarno, S., Usman, M., Warsono, Kurniasari, D., Widiarti, 2021. Application of Vector Error Correction Model (VECM) and Impulse Response Function for Daily Stock Prices. J. Phys. Conf. Ser. 1751. https://doi.org/10.1088/1742-6596/1751/1/012016
Wishitemi, B.E.L., Momanyi, S.O., Ombati, B.G., Okello, M.M., 2015. The link between poverty, environment and ecotourism development in areas adjacent to Maasai Mara and Amboseli protected areas, Kenya. Tour. Manag. Perspect. 16, 306–317. https://doi.org/10.1016/j.tmp.2015.07.003
Yu, E.S.H., Jin, J.C., 1992. Cointegration tests of energy consumption, income, and employment. Resour. Energy 14, 259–266. https://doi.org/10.1016/0165-0572(92)90010-E